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Introduction

Use of digital computers or microcontrollers to manage the behavior of dynamic
systems.

Typically includes
sampling an analog signal

processing the data in discrete steps (using algorithms or controllers like PID),
and

generating a control signal to influence the system.

Benefits: programmability, flexibility, computational power, improved precision
over analog control systems.

Key components
analog-to-digital converters (ADCs)

digital-to-analog converters (DACs)

and software for processing the control logic.
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Discrete control

Continuous control systems: signals are processed continuously over time,
Discrete control systems:

Managing dynamic systems using digital signals sampled at specific time
intervals.
Work with signals at discrete moments, dictated by a sampling period.

Sampling: Converting a continuous signal into a sequence of discrete values at
regular intervals.
Quantization: Representing the sampled values in a digital form.
Control Logic: Using algorithms like PID or state-space models to make decisions
based on the discrete samples.
Actuation: Producing a control signal that affects the system’s behavior.
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z-transform

Discrete-time counterpart of the Laplace transform
Converts a discrete-time signal (sequence of numbers) into a complex frequency
domain representation.

Definition
The z-transform of a discrete-time signal  is defined as:

where:

 is the discrete-time signal (sequence).

 is the discrete-time index (integer).

 is a complex variable, defined as , where  is the radius and  is the
angle in radians.
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Relationship between z-plane with s-plane

Processes are stable if they do not possess the poles that lies outside the unit-
circle in the z-plane.
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z-transform

Function sampled at discrete time step 

Laplace transform of : 

We can also apply Laplace transform to : 

Since  only exists at sampling instant
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z-transform

Exists only if the summation of infinite terms takes finite values. Depends on
sampling period T

z-transform is merely a Laplace transform for a sampled data sequence, as such
inherits many of the properties of Laplace transform.

z-transform allows:
Development of input-output models for discrete-time system

Can be used to analyze how discrete-time processes react to external input
changes.
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z-transform

z-transform of unit step

z-transform of the discrete cosine signal

If ,

The values of a unit step function and cosine wave sampled at uniform intervals
of period T are the same.
Impossible to distinguish two functions, which have the same samples values at
the sampling instants.
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z − 1
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Aliasing

Different continuous-time signals can produce the same set of samples if the
sampling rate is not appropriately chosen

The sampling process cannot capture frequencies higher than half the
sampling rate (the Nyquist rate).

If two signals sampled at uniform intervals have the same values, they are
indistinguishable when only looking at their samples.

The resulting discrete-time sequence may not uniquely identify the original
continuous-time signal.
Loss of information during the sampling process
Errors in signal processing and control applications

To avoid aliasing, the sampling rate must be at least twice the highest frequency component of the signal being
sampled. Failing to do so can cause the overlap of spectral components, resulting in different signals becoming
indistinguishable.

Nyquist-Shannon sampling theorem
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Direct digital control (DDC)

Two Primary Components:
Digital Control Algorithm: A discrete component responsible for processing
the error and generating control commands in discrete-time.
Process with Hold Elements: The hold elements convert the discrete-time
control commands into continuous signals, enabling interaction with a
continuous-time process (plant).
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Discrete time analysis

The pulse transfer function relates the discrete-time output  to the
discrete-time control command  using z-transforms.

The system components consist of the hold element  and the process
, combined as:

The z-transform is applied to obtain the equivalent transfer function in the z-
domain:

y(nT )
c(nT )

H(s)
G ​(s)p
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Block diagram manipulation

Manipulation of block diagrams of sampled data systems are very similar to that
for those in the Laplace domain.
The z-transform is a special case of the Laplace transform.
The presence of samplers, there are some extra rules to follow
ZOH denotes zero-order hold element
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z-transform of continuous-time transfer functions

System A

Discretizes each transfer function
separately and then multiplies them in
the z-domain.

System B

First combines the transfer functions in
the ( s )-domain and then applies the z-
transform

The order of discretization and multiplication matters.
Applying the z-transform separately to each transfer function is generally not
equivalent to applying the z-transform to the combined transfer function in the s-
domain.

Y (z) = Z{F (s)} ⋅ Z{G(s)} ⋅ U(z)

Y (z) = F (z)G(z)U(z)

Y (z) = Z{F (s)G(s)} ⋅ U(z)

Y (z) = FG(z)U(z)

Advanced Modeling and Control 13 / 19



MATLAB functions

MATLAB built-in function to convert a continuous transfer function G(s) to
discrete system cdc

SYSD = c2d(SYSC,TS,METHOD) computes a discrete-time model SYSD
with

sample time TS that approximates the continuous-time model SYSC.

The string METHOD selects the discretization method among the following:
zoh - Zero-order hold on the inputs
foh - Linear interpolation of inputs
impulse - Impulse-invariant discretization
tustin - Bilinear (Tustin) approximation.
matched - Matched pole-zero method (for SISO systems only).
least-squares - Least-squares minimization of the error between
frequency responses of the continuous and discrete systems (for SISO
systems only).
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Effect of sampling period

Long sampling period leads to slower response compared to the continuous PI
controller

Smaller sampling period leads to faster response and approaching that of the
continuous PI controller as the sampling period decreases

In practice, there is a trade-off between short sampling period and
storage/computational capacity

Short sampling period requires more computational and storage capacity but
gives good control performance

Long sampling period requires less storage and computational capacity but lower
control performance
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Position form of a PID controller

Discrete implementation of the PID control law where the controller output is
updated at each sampling time.
At each sampling time the actual value (position) of the output signal is
calculated based on the current error and its historical behavior.
The PI controller saves:

Current Error 

Sum of All Previous Errors : 

PI Control Law

PID Controller

PID saves previous errors as well
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Velocity form of a PID controller

Focuses on calculating the change in the controller output at each sampling time
rather than the absolute position (total output).
Instead of directly calculating the full controller output, the velocity form computes
the change in output ( ) between successive sampling times  and .

At the -th sampling period

At the -th sampling period

The velocity form of the PID controller calculates the difference between  and
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Position vs velocity form

Aspect Position form Velocity form

Simplicity & Intuitiveness Direct calculation of output; simpler Calculates change in output; may be

to understand and implement less intuitive initially

Integral Action Handling Full integral action for precise error Limited integral effect to prevent

elimination windup

Response to Slow
Dynamics

Works well in systems with slow
dynamics

More responsive in fast systems

Memory & Computational Suitable if memory isn’t a constraint More efficient, lower memory

Load requirement

Risk of Windup & Stability Potential for windup; needs careful Reduces windup and increases

tuning stability in saturated systems

Control Signal Saturation Not optimized for saturation Suitable for limited-range actuators;

prevents large jumps
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Conclusion

Digital control enhances flexibility, precision, and easy implementation of
algorithms.

Understanding the s-plane to z-plane relationship is key for stable discrete
system design.

The sampling period impacts performance; shorter periods improve control but
increase computation.

Proper sampling rates prevent aliasing, ensuring accurate discrete-time signal
representation.

DDC bridges digital algorithms and continuous processes effectively using hold
elements.

Position and velocity PID forms suit different needs based on system dynamics
and computational trade-offs.
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