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Univariate vs multivariate analysis

Univariate statistical analysis – 1 input variable and 1 response variable
E.g., input variable = reactor temperature; response variable = reactor
conversion

Multivariate statistical analysis – multiple variables and multiple responses
E.g., input variables = reactor temperature, feed concentration; response
variables = reactor conversion and product yield

Multivariate analysis attempts to reveal the key information from the correlated
variables
Widely used in the science and engineering applications – data analysis
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Multivariate analysis

Goal of many multivariate approaches is simpli�cation – from large dimension to
smaller or reduced dimension of datasets
Such approaches are exploratory, e.g., generate hypotheses rather than for
testing them
Some approaches:

i. Discriminant Analysis – identifying the relative contribution of 𝑝 variables to
separation of the groups

ii. Principal Component Analysis (PCA) – reduces large dimension of a data set to
smaller dimension

iii. Multivariate regression, e.g., partial least square (PLS) regression
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Discriminant analysis

Discriminant analysis (DA) is a supervised learning technique primarily used for
classi�cation tasks. It seeks to �nd the combination of features that best
separates or discriminates between two or more prede�ned classes.
Objective is to �nd a linear combination of features that best separates two or
more classes.
Discriminant Function: A function created from the linear combination of
predictor variables that best separates the classes.
Decision Boundary: The line or surface that separates different classes in the
feature space.
Advantages

Simple and easy to understand.
Effective when data meets the assumptions of normality and equal covariance
matrices.

Disadvantages
Assumes linear class boundaries, which may not perform well with non-linear
separations.
Sensitive to outliers, which can signi�cantly impact results.
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Applications of discriminant analysis

Fault Detection and Diagnosis
DA can be used to distinguish between normal reactor operation and issues like
overheating, catalyst deactivation, or abnormal pressure drops by analyzing
sensor data.

Quality Control
In polymer production, DA can help in assessing product quality through
variables such as molecular weight, viscosity, and tensile strength.

Predictive Maintenance
For heat exchangers, DA can identify operational states, ranging from “normal” to
“early fouling” or “severe fouling,” allowing for timely maintenance.

Safety and Risk Management
DA can be used to provide early warnings by classifying real-time plant conditions
as safe or potentially hazardous, enabling preventive actions.
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Principal component analysis

An exploratory technique used to reduce the dimensionality of the data set to 2D
or 3D
Can be used to:

Reduce number of dimensions in data: Minimizes the number of variables in a
dataset, helping in data simpli�cation
Identify outliers
Find patterns in high-dimensional data: Identi�es underlying patterns in high-
dimensional data, making it easier to analyze.
Visualize data of high dimensionality: Facilitates the visualization of complex,
high-dimensional datasets by projecting them into lower dimensions.
Example applications:

Process monitoring, quality control
Environmental analysis
Face recognition, image compression
Gene expression analysis
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What are Principal Components?

Suppose you have a dataset with many variables (features), say 10, 50, or even
100 dimensions.

Each data point in this high-dimensional space is an observation or a sample,
characterized by these variables.

PCA transforms this high-dimensional data into a new set of axes called principal
components.
These are linear combinations of the original variables.
The principal components are ordered by the amount of variance they explain:

First Principal Component (PC1): The direction in the data that captures the
most variance (i.e., the greatest spread of the data).
Second Principal Component (PC2): The direction orthogonal (at a right angle)
to PC1 that captures the next highest amount of variance.
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PCA analysis

PCA decomposes a data set [matrix (m observations, n variables)] into

 is the number of principal components (typically )

 is the scores matrix (order ).
Scores are the projections of the original data onto the principal components. Each row represents an
observation’s coordinates in the reduced k-dimensional space.

 is the loading matrix (order ).
These are the coef�cients that de�ne each principal component as a linear combination of the original variables.
Each column represents a principal component, and each row corresponds to a variable.

 is the residual or error matrix (order ).
Ideally, if all principal components are retained,  would be a zero matrix. In practice, it captures the noise or
less important variations in the data that are not accounted for by the principal components.

Principal components are orthogonal to each other, i.e., they are uncorrelated

 can be obtained using the singular value decomposition (SVD) or ALS
(alternate least square).

X

X = TP +ET

k k ≤ n

T m× k

P n× k

E m× n

E

P
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PCA analysis

Principal components show directions
of the data that explain a maximal
amount of variance

The larger the variance carried by a
line, the larger the dispersion of the
data points along it

Original data on the left with original
coordinate  and 

Variance of each variable graphically
represented

Direction of the maximum variance
i.e., principal component PC1 and PC2

x  1 x  2
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Process modeling using PCA

Distillation column example

Separating a Methanol — Ethanol
mixture

CVs: ; MVs: ; DVs:

SISO control

Model and data set incorporated in app
Workflow

Phase I: Model steady state with
PCA
Phase II: Project new observations
on model and detect deviation

Y  ,X  D B D,B,L,V
F  zT
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Phase I: Model steady state with PCA

Phase I: Model building to capture normal operating conditions

No plant data  use Simulink model to generate process data→
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Phase I: Model steady state with PCA

Reduce size of data set
Higher observations means better model but increases computing
requirement

Derive PCA model based on smallest data set that represents information in
entire data set

Select random subset
Fit PCA model
Compute percentage of out-of-control points
If below threshold (5%), stop or else repeat above steps by increasing size of
random subset
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Phase I: Model steady state with PCA
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Phase I: Model steady state with PCA

SPE control chart
Measures the distance to the model

Hotelling’s  control chart

Measures if the projected observations
are in NOC zone

Solid red line indicates 90% con�dence interval; dashed red line indicates 95%
con�dence interval.

T 2
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Phase II: Model exploitation

New ‘faulty’ data is pre-processed and projected onto the PCA model
If process is below control limits in both charts Process under control
If point is outside limits

Check SPE chart and look at corresponding contribution plots
Check T2 chart and look at corresponding contribution plots

Faults
Pl loop failure
Operating mode change
3 types of process disturbance: spike, ramp, pulse
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Contribution chart

Shows how each original variable contributes to a particular principal component
Helps to identify which variables are most responsible for the patterns or outliers
Variables with higher contributions are those that have a stronger influence on
the differentiation of the observations.
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Scores

Score plot typically represents the data points projected onto the �rst two
principal components.
Each point represents an observation (e.g., a sample or an experiment) in the
reduced dimensionality space.
The score plot is used to identify patterns, groupings, or outliers in the data.
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Partial least square (PLS) regression

PCR
Unsupervised learning: PCR �nds new directions (PCs) that best summarize the
features (variables) 

The PCs that best explain the features might not be the best for predicting the
response.

Not considering the response  may lead to PCs that don’t help in predicting .

The directions that best describe the features might not be the best for
prediction.

PLS
Supervised learning: PLS reduces dimensions but does so by considering the
response  while �nding new directions 

 are the linear combinations of original features.

This means the new features are not only good approximations of the original
ones but are also related to the response.

X  , … ,X  1 M

Y Y

Y Z  , … ,Z  1 M

Z  , … ,Z  1 M
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pls model

Multivariate model

 matrix of predictors,  matrix of projections of 
(scores)

 orthogonal loading matrix,  error matrix

 matrix of responses,  matrix of projections of  (scores)

 orthogonal loading matrix,  error matrix

Notation  denotes a matrix with  number of rows (observations) and 
number of columns (responses).

: The number of predictors (independent variables) in the matrix 

: The number of latent variables or components extracted by the PLS model.

X = TP +T E  , Y =X UQ +T E  Y

X ∈ Rn×m T ∈ Rn×l X

P ∈ Rm×l E  ∈X Rn×m

Y ∈ Rn×p U ∈ Rn×l Y

Q ∈ Rm×l E  ∈Y Rn×p

Rn×p n p

m X

l

Advanced Modeling and Control 20 / 28



PLS model

 (the score matrix for ) and  (the score matrix for ) are calculated by
projecting the original matrices  and  onto latent variables. These latent
variables are found by maximizing the covariance between the projections of 
and .

 (the loading matrix for ) and  (the loading matrix for ) are determined by
regressing the original matrices  and  onto the score matrices  and ,
respectively. The loading matrices capture the relationships between the original
variables and the latent variables (scores).

 and  represent the residual matrices for  and , respectively. They
capture the variation in the original matrices  and  that is not explained by
the model. These matrices are determined by subtracting the product of the
score and loading matrices from the original matrices:  and

.

The iterative process continues until a satisfactory number of latent variables
(components) have been extracted, providing a balance between model accuracy
and complexity.

T X U Y

X Y

X

Y

P X Q Y

X Y T U

E  X E  Y X Y

X Y

E  =X X − TP T

E  =Y Y − UQT
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Satisfactory number of latent variables

Cross-Validation: Split the data into training and validation sets. Increase the
number of components until the prediction error on the validation set stops
improving. The optimal number of components is where the validation error is
minimized.

Explained Variance: Choose the number of components that achieve a signi�cant
portion of explained variance (e.g., 90-95%), adding more only if necessary.

Model Stability: Monitor model parameters (e.g., loadings and scores) as
components are added. A satisfactory number is reached when these parameters
stabilize, indicating no over�tting.

Interpretability: Choose the fewest components that offer meaningful and
distinct interpretations in the context of the problem. Avoid adding components
that don’t improve interpretability.

External Validation: Validate the model on independent data, selecting the fewest
components that ensure good predictive performance and generalization.

Typically, cross-validation combined with explained variance is used to determine
the optimal number of components, balancing model complexity, accuracy, and
interpretability.
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Biplot

The points in the biplot represent the
samples projected onto the principal
components (in PCA) or latent
variables (in PLS).

The position of each point reflects
how the sample is related to the
components.

The vectors or arrows represent the
original variables. The direction and
length of each vector indicate the
contribution of the variable to the
components. Longer arrows suggest a
stronger influence on the
corresponding component. Variables
that are closer to the origin have less
influence on the components

Smaller angles between vectors
suggest higher positive correlation,
whereas angles close to 180° suggest
a negative correlation.
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Variable importance in projection (VIP) score

Identifying the most influential
variables in the model

Shows the VIP scores, which are
metrics that quantify the contribution
of each variable to the model across
all components

A common threshold is a VIP score of
1. Variables with VIP scores greater
than 1 are generally considered
signi�cant contributors to the model,
while those with scores below 1 may
be considered less important.

Variables with high VIP scores are
essential in explaining the variation in
the dependent variable. They have a
strong influence on the model’s
predictions.

The VIP score plot can guide the selection of variables when re�ning a model, helping to focus on the most
informative predictors.
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Pareto plot

Pareto principle (80/20 Rule): roughly
80% of the effects come from 20% of
the causes.

The x-axis lists the different
categories, arranged in descending
order of their impact or frequency. Left
y-axis shows the frequency, right y-
axis shows the cumulative
percentage.

Bars (Frequency/Impact): The bars
represent the individual factors or
categories.

Ordered from the most signi�cant
(highest frequency or impact) to
the least signi�cant.

Cumulative Line: cumulative
percentage of the total impact or
frequency
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PLS in Matlab

MATLAB function called plsregress
[XL,YL,XS,YS,BETA,PCTVAR,MSE,stats] = plsregress(X,Y,ncomp)
returns

The predictor and response loadings XL and YL
The predictor scores XS. Predictor scores are PLS components that are linear
combinations of the variables in X.
The response scores YS. Response scores are linear combinations of the
responses with which the PLS components XS have maximum covariance.
The matrix BETA of coef�cient estimates for the PLS regression model.
The percentage of variance PCTVAR explained by the regression model.
The estimated mean squared errors MSE for PLS models with ncomp
components.

A structure stats that contains the PLS weights,  statistic, and predictor and
response residuals.

T 2
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Data quality

Data quality is crucial for developing accurate and reliable data-driven models
like ANN, PLS, and others.
The quality of data is influenced by factors such as how it is generated, the
sampling period, the number of observations, and the presence of missing data.
A large sampling period can lead to a signi�cant loss of information, negatively
impacting the model’s performance.
A short sampling period captures more detailed information, increasing the
number of data points, which can strain storage and processing capacity but
doesn’t necessarily increase the dimensionality of the feature space.
Missing data and inconsistencies can skew model training, leading to unreliable
predictions and conclusions.
In practice, a balance must be struck between preserving information and
managing storage and processing capacity to ensure both model performance
and ef�ciency.
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Summary

Process plant monitoring is essential for safe and pro�table operations.

Early detection of faulty sensors or process abnormalities enhances safety and
pro�tability.

Technological advances have increased data acquisition, leading to large
datasets.

Large datasets often include irrelevant information; effective data modeling can
help isolate the key variables and enhance predictions.

Effective data modeling with techniques like PCA and PLS helps identify key
variables, predict important outcomes, and improve system interpretation.

Principal Component Analysis (PCA): Reduces dataset dimensionality by
projecting data onto principal component space (latent variables). Widely used in
the process industry.

Partial Least Squares (PLS): Aligns predictor and response variables in latent
space, maximizing the correlation between them to improve model accuracy and
system interpretation.
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