

Lecture Note 8 Time Series Modelling and Analysis

©JN 2020 JN/CP Revised 2021 JN/RU Revised 2022

Advanced Modelling and Control 1

Outline

- Introduction to time series
- Stationary vs unstationary behaviours in time series data
- Autoregressive (AR) model
	- AR in MATI AB
- Autoregressive- Exogeneous (ARX) model
	- ARX in MATLAB
- Autoregressive Moving Average (ARMA) model
	- ARIMA in MATLAB

Introduction

- Time-series data consists of a number of observations ordered in time
- Observations (measurements) are often equally spaced, e.g., by day, week, month, etc.
- Examples of time series data
	- Gross domestic product (GDP)
	- Unemployment rate
	- Oil price
	- Building temperature, etc.
- One-way ordering of time a future value can be expressed in terms of historical values.

Oil price hits 18-year low

Advanced Modelling and Control 4

Stationary vs Non-stationary

- Stationary behaviour
- Mean is at zero

- Non-stationary behaviour
- Mean is varying with time

Advanced Modelling and Control 5 and \sim 5 and 5 and

Time series representation

- The nature of time series data includes: large in data size, high dimensionality and update continuously.
- Time series data is characterized by its numerical and continuous nature, is always considered as a whole instead of individual numerical field.
- Unlike traditional databases where similarity search is **exact match** based, *similarity* search in time series data is typically carried out in an *approximate manner*.
- The fundamental problem is **how to represent** the time series data
- Based on the time series representation, different mining tasks can be done:
	- i. Pattern discovery and clustering
	- ii. Classification
	- iii. Rule discovery
	- iv. Summarization.

Time series representation and indexing

• One of the reasons of time series representation is to reduce the dimension (i.e., number of data points)

Resampling of the time series data

• Data reduction by resampling can cause distortion of the resampled data

Similarity measure

- Similarity measure is important for a variety of time series analysis and data mining tasks
- To measure the similarity/dissimilarity between two time series, the most popular approach is to evaluate the **Euclidean distance** on the transformed representation

Euclidian distance between the two timeseries is the square-root of the sum of square length of the hatch lines.

Time series decomposition

- Goal in analysis is to **decompose a series** into a set of non-observable (latent) components which can be associated to different types of temporal variations
- Note: 17th century astronomers used time series decomposition to calculate the planetary orbits
- 4 types of fluctuations
	- i. Long-term tendency
	- ii. Cyclical movements
	- iii. Seasonal movements
	- iv. Residual variations due to, e.g., war and pandemic

Mining in time series

- Mining is to discover *hidden information* or knowledge from either the original or the transformed time series data.
- Pattern discovery is the most common mining task
- The clustering method is the most commonly used in the pattern discovery
- The discovery of interesting patterns is an important data mining task that is applicable in many domains
- The discovered rules and patterns can be used to build *forecasting models* that are able to predict future developments

What is Model?

- A model called *structural* if its parameters has natural or **structural interpretation**
	- The model can provide *explanation* and *control* of the process generating the data
- When no models are available for a data set from theory or experience, it is still possible to fit models which suffice for:
	- **Simulation** (from what has been observed, generate more data similar to that observed),
	- **Prediction** (from what has been observed, forecast the data that will be observed), and
	- **Pattern recognition** (from what has been observed, infersignificant characteristics of the process generating the data such as significant time lags, significant, frequencies, extractable signals, and noise)
- When a model is *not structural* it is called *synthetic*, and its parameters are called *synthetic parameters*

Autoregression (AR) Model

- Assume the present output value depends on the past output values in discreet time
- AR model is expressed as follows

$$
y_t = c + \sum_{i=1}^n \alpha_i y_{t-i} + \varepsilon_t
$$

Where c is a constant, α_i is a model parameter, n is the model order, and ε_t is the white noise (or error)

• Eg., for $p = 2$, the corresponding AR model is

$$
y_t = c + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \varepsilon_t
$$

• Value of output at t is given by the two historical values which 1 and 2 steps before the present value

AR model with back shift operator z^{-k}

 $y_t = c + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \varepsilon_t$

• This model can also be written as follows

$$
y_t = c + (\alpha_1 z^{-1} + \alpha_2 z^{-2})y_t + \varepsilon_t
$$

\n
$$
\Rightarrow (1 + \alpha_1 z^{-1} + \alpha_2 z^{-2})y_t = c + \varepsilon_t
$$

\n
$$
\therefore y_t = \frac{c + \varepsilon_t}{1 + \alpha_1 z^{-1} + \alpha_2 z^{-2}} = \frac{c + \varepsilon_t}{A(z)}
$$

Where $A(z) = 1 + \alpha_1 z^{-1} + \alpha_2 z^{-2}$

- An all-pole infinite impulse response (IIR) filter driven by the white noise as input
	- Finite impulse response (FIR) system the impulse response does become exactly zero at times $t > T$ for some finite T

Example 1 – AR model order

 1.5 Validation data sys2 0.5 Amplitude -0.5 -1.5 100 200 300 400 500 600 Time (seconds)

Time Response Comparison

- $n=2$
- Accuracy 74%
- Model is given by

 $A(z) = 1 - 1.073z^{-1} + 0.111z^{-2}$

- $n = 4$
- Accuracy 75%
- Model is given by $A(z) = 1 - 1.093z^{-1} + 0.0061z^{-2} + 0.443z^{-3} - 0.328z^{-4}$

Example 2 – Malaysia COVID-19 Infection

Infection Data 2020

- 1) Open Matlab
- 2) COVID-19 cumulative infection from **26/01/2020 to 30/04/2020** used to build an AR model
- 3) Check the projection using the AR model with data from **01/05/2020**
- On Matlab Command Window, copy the data from Excel and paste into the []. Type as follows:

 $>> X =$ []; % paste the data into the \lceil], then press enter.

• Invoke the '*ar*' built-in function in Matlab $>> Sys1 = ar(X,2);$ % n = 2

• Type and enter as follows >> Sys1

$Svs1 =$

Discrete-time AR model: $A(z)v(t) = e(t)$ $A(z) = 1 - 1.932 z^2 - 1 + 0.9322 z^2 - 2$

• Model is

 $A(z) = 1 - 1.932z^{-1} + 0.9322z^{-2}$

• To compare the model and data, use the built-in '**compare**' function >> **compare**(X,Sys1,2); % M = 2 is the

prediction horizon, where data up to $t -$ M is used to predict the output of Sys1

Example 2 – Malaysia COVID-19 Infection

- The 2^{nd} order AR model fit the infection data well (97% fitness)
- The same data used to build the model is used for the prediction
- How accurate the model prediction will be if it is used to forecast the data beyond 30/04/2020
- Let include the data up to 09/05/2020 in X dataset.
- 9 data points added.

Advanced Modelling and Control 16

Example 2 – Malaysia COVID-19 Infection

- Copy and past the entire dataset (including 9 extra points) onto Matlab Command Window
- Type as follows
- >> **compare**(X,Sys1,9);
- Use m = 9, because we want to predict the 9 data points added using the AR model
- Fitness drop to 85%
- Longer prediction, poorer model fitness.
- For $m = 2, 3, 4, 5$ and 6 the fitness values are 97%, 96%, 94%, 93% and 91% respectively.

Advanced Modelling and Control 17 and 2008 17 and 2008

ARX model

- Is a linear equation for the present output value as a function of the past output and input values in discrete time
- Single input and single output ARX structure without input delay:

$$
y_t + \sum_{i=1}^p \alpha_i y_{t-i} = \sum_{i=0}^q \beta_i u_{t-i} + \varepsilon
$$

• Can be expressed using the back shift operator:

$$
y(t)A(z) = B(z)u(t) + \varepsilon
$$

Where $A(z) = 1 + \alpha_1 z^{-1} + \alpha_2 z^{-2} + \cdots + \alpha_p z^{-p}$ and $B(z) = \beta_1 + \beta_2 z^{-1} + \cdots + \beta_q z^{-q+1}$

• For system with input delay with magnitude n_k :

$$
y_t + \sum_{i=1}^p \alpha_i y_{t-i} = \sum_{l=1}^q \beta_l u_{t-n_k-l} + \varepsilon
$$

Advanced Modelling and Control 18

Example 3

• Consider a transfer function given as follows:

$$
G_p(s) = \frac{2 \exp(-s)}{10s + 1}
$$

• Find an ARX model for the above system, with 1 unit step change in input and sampling time $Ts = 1$ unit

Advanced Modelling and Control 19 and 19

Example 3 cont..

From Matlab:

 $A(z) = 1 - 0.9048 z^{(-1)} - 6.647e^{-1} - 2 - 8.099e^{-1}6 z^{(-3)}$ $B(z) = 9.789e-07 z^2-1 + 0.1903 z^2-2$

Fit to estimation data: 100% (prediction focus) FPE: 1.855e-31, MSE: 1.249e-31

ARMA

- Autoregressive-moving average (ARMA) model for "stationary" time series
- Combination of autoregression (AR) and moving average (MA)
- ARMA model can be used to understand and predict future values in time series
- ARMA model:

$$
y(t) = c + \varepsilon_t + \sum_{i=1}^p \alpha_i y_{t-i} + \sum_{i=1}^q \beta_i \varepsilon_{t-i}
$$

where α_i and β_i are the model parameters, p and q are the model orders, c is the constant and ε_t , ε_{t-i} are white noise errors.

• y at time $t = constant + weighted sum of the last p values of y + weighted sum of$ the last q forecast errors

Nonseasonal ARIMA model

- Non-seasonal time series consists of a trend component and an irregular component.
- Decomposition of the time series into these components and estimation of the trend component and irregular component.
- ARIMA = autoregressive integrated moving average, consists of AR, I and MA where I means the integration.
- Matlab has a built-in 'arima' function to build an ARIMA model the syntax:
- Mdl = $\text{arima}(p,d,q)$
	- p is the number of autoregressive terms,
	- d is the number of nonseasonal differences needed for stationarity, and
	- q is the number of lagged forecast errors in the prediction equation.

Matlab function - arima(p,d,q)

- Significance of d
	- If d = 0, then $\Delta Y_t = y_t$ where ΔY_t denotes the 0th difference of y
	- If d = 1, then $\Delta Y_t = y_t y_{t-1}$
	- If d = 2, then $\Delta Y_t = (y_t y_{t-1}) (y_{t-1} y_{t-2}) = y_t 2y_{t-1} + y_{t-2}$
	- Note: $d=2$ means the first-difference of the first-difference
- Some examples of typical model specifications:
	- ARIMA $(0,1,0)$ = random walk model
	- ARIMA $(2,0,0)$ = 2nd-order autoregressive model
	- ARIMA $(0,1,1)$ = simple exponential smoothing model
	- ARIMA $(1,1,2)$ = linear exponential smoothing with damped trend

Example 4 – Daily Prices of Black Pepper

- Black pepper prices from 02-01- 2019 to 17-06-2019
- Use the following Matlab functions
	- **1.** $\text{arima}(p,d,q) \Rightarrow$ to build ARIMA model
	- **2. estimate**(Mdl,X) => to estimate the ARMA model parameters
	- **3. simulate**(EstMdl,t) => to simulate the ARMA model
	- **4.** $plot(tx,X,tx,y) = > to compare the data and model estimation$
- Copy and paste the X data (black pepper price) on Matlab Command window

Sarawak Black Pepper Daily Price (USD/MT)

Example 4 – continue …

- There are 118 data points (over 118 days);
- Type on Matlab Command window:
- \geq X = []; % copy and paste excel data into $^{\prime}$ []'
- \Rightarrow tx = [1:1:118]';
- Build ARIMA model, e.g., try 2 specifications
- $>>Md1 = \text{arima}(1.0.3)$;
- >>Mdl2 = arima(2,0,0);
- Estimate model parameters
- \Rightarrow EstMdI1 = estimate(MdI1,X);
- >>EstMdl2 = estimate(Mdl2,X);
- ARIMA 1 is given by y_t $= 229.38 + 0.925y_{t-1} + 0.03\varepsilon_{t-1}$ $+ 0.072\varepsilon_{t-2} + 0.546\varepsilon_{t-3}$
- ARIMA 2 is given by $y_t = 24.13 + 0.635y_{t-1} + 0.357y_{t-2}$
- Simulate the models: \geq y1 = simulate(EstMdl1,n); % n = length(tx)
- \Rightarrow y2 = simulate(EstMdl2,n);
- Plot the data and model estimation

Example 4 – continue…

Result not accurate using both models. Why? The presence of significant "**unstationary**" behaviour.

Advanced Modelling and Control 26

Example 5

- Data trend does not show significant drift.
- Try a few models
	- i. Mdl $1 = \arima(2,0,0)$
	- ii. Mdl2 = $\arctan(2,1,1)$;
	- iii. Mdl $3 = \arima(2,0,2);$
- ARIMA 1 $y_t = 0.00118 + 0.925y_{t-1} - 0.0769y_{t-2}$ • ARIMA 2 $y_t = 0.0016 - 0.5798y_{t-1} + 0.1542y_{t-2} + 0.6022\varepsilon_{t-1}$
- ARIMA 3

 y_t

$$
= -0.5799y_{t-1} + 0.1542y_{t-2} - 0.3978\varepsilon_{t-1} - 0.6022\varepsilon_{t-2}
$$

Advanced Modelling and Control 27 and 2008 27 and 27 a

Advanced Modelling and Control 28

Summary

- Time series data analysis is common in process industry and in many other fields
- 3 common models are AR, ARX and ARMA (or ARIMA in Matlab)
- Selection of a suitable model structure requires some knowledge about the data characteristics, e.g., stationary or non-stationary, random or deterministic
- ARX can be used to represent a transfer function model