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Outline

* Introduction to time series

« Stationary vs unstationary behaviours in time series data

 Autoregressive (AR) model
« AR in MATLAB

 Autoregressive- Exogeneous (ARX) model
« ARX in MATLAB

 Autoregressive Moving Average (ARMA) model
« ARIMA in MATLAB



Introduction

 Time-series data consists of a number of observations ordered in time

« Observations (measurements) are often equally spaced, e.g., by day,
week, month, etc.
« Examples of time series data
» Gross domestic product (GDP)
* Unemployment rate
 Qil price
» Building temperature, etc.

* One-way ordering of time — a future value can be expressed in terms of
historical values.



Oil price hits 18-year low
Brent crude, US dollars per barrel

Kuala Lumpur Malaysia Weather
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Stationary vs Non-stationary

e Stationary behaviour * Non-stationary behaviour
* Mean is at zero * Mean is varying with time
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Time series representation

» The nature of time series data includes: large in data size, high dimensionality and update
continuously.

« Time series data is characterized by its numerical and continuous nature, is always
considered as a whole instead of individual numerical field.

» Unlike traditional databases where similarity search is exact match based, similarity
search in time series data is typically carried out in an approximate manner.

» The fundamental problem is how to represent the time series data

* Based on the time series representation, different mining tasks can be done:
i. Pattern discovery and clustering
ii. Classification
iii. Rule discovery

iv. Summarization.



Time series representation and indexing

* One of the reasons of time series representation is to reduce the
dimension (i.e., number of data points)

M =

Resampling of the time series data

iV

» Data reduction by resampling can cause distortion of the resampled data



Similarity measure

« Similarity measure is important for a variety of time series analysis and
data mining tasks

» To measure the similarity/dissimilarity between two time series, the most
popular approach is to evaluate the Euclidean distance on the
transformed representation

Euclidian distance between the two time-
series is the square-root of the sum of
square length of the hatch lines.
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Time series decomposition

* Goal in analysis is to decompose a series into a set of non-observable
(latent) components which can be associated to different types of temporal
variations

« Note: 17t century astronomers used time series decomposition to
calculate the planetary orbits
4 types of fluctuations
i.  Long-term tendency
ii. Cyclical movements
iii. Seasonal movements
iv. Residual variations due to, e.g., war and pandemic



Mining in time series

Mining is to discover hidden information or knowledge from either the
original or the transformed time series data.

Pattern discovery is the most common mining task

The clustering method is the most commonly used in the pattern discovery

The discovery of interesting patterns is an important data mining task that is
applicable in many domains

The discovered rules and patterns can be used to build forecasting models that
are able to predict future developments



What is Model?

* A model called structural if its parameters has natural or structural
interpretation

 The model can provide explanation and control of the process generating the data

* When no models are available for a data set from theory or experience, it is still
possible to fit models which suffice for:

« Simulation (from what has been observed, generate more data similar to that observed),
* Prediction (from what has been observed, forecast the data that will be observed), and

« Pattern recognition (from what has been observed, infersignificant characteristics of the
process generating the data such as significant time lags, significant, frequencies,
extractable signals, and noise)

 When a model is not structural it is called synthetic, and its parameters are
called synthetic parameters



Autoregression (AR) Model

» Assume the present output value depends on the past output values in discreet time

* AR model is expressed as follows
n

Y =C+ Z aiyi_i + &
i=1

Where c is a constant, «; is a model parameter, n is the model order, and ¢, is the white
noise (or error)

* Eg., for p = 2, the corresponding AR model is
Ve = C+ a1Ye—1 T XYe—2 T &

» Value of output at t is given by the two historical values which 1 and 2 steps before the
present value



AR model with back shift operator z=%

» This model can also be written as follows
ye=c+ (a1z7t + ayz72)y, + &
= 1+az7 ' +a,z278)y, =c+ ¢
B c+ & _ctg
1+ azl+az2 A(2)

Where A(z) =1+ ayz 1 + a,z72

Vi

* An all-pole infinite impulse response (lIR) filter driven by the white noise as input

» Finite impulse response (FIR) system - the impulse response does become exactly zero
at times t > T for some finite T



Example 1 - AR model order

y1

Time Response Comparison
T T

1.5 T T

0.5

-0.5+

Validation data
sys1

A 7

100 200 300

Tima (ecarnnde)
n=2

Accuracy 74%
Model is given by

A(z) =1-1.073z"1 4+ 0.111z72
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Time Response Comparison
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Amplitude
y1
o

Validation data
sys2

200

1
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e n=4
* Accuracy 75%
 Modelis given by

A(z) =1 —1.093z"1 4 0.0061z2 + 0.443z3 — 0.3287*
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Example 2 — Malaysia COVID-19 Infection

Infection Data 2020

29-Feb
1-Mar
2-Mar
3-Mar
4-Mar
5-Mar
6-Mar
7-Mar
8-Mar
9-Mar
10-Mar
11-Mar
12-Mar

25
29
29
36
50
55
83
93
99
117
129
149
158

1) Open Matlab

2) COVID-19 cumulative infection from
26/01/2020 to 30/04/2020 used to build
an AR model

3) Check the projection using the AR model
with data from 01/05/2020

* On Matlab Command Window, copy the
data from Excel and paste into the [ ].
Type as follows:

>>X=[ ], % paste the data into the [ ], then

press enter.

* Invoke the ‘ar built-in function in Matlab

>>Sysl =ar(X,2); % n=2
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* Type and enter as follows

>> Sysl

Sysl =

Discrete-time AR model: A(z)y(t) = e(t)
A(z) =1-1.932 z7-1 +0.9322 z/-2

* Modelis

A(z) =1-1.932z"1+40.93222z72

* To compare the model and data, use

the built-in ‘compare’ function

>> compare(X,Sys1,2); % M =2 is the

prediction horizon, where dataup to t —
M is used to predict the output of Sys1
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Example 2 — Malaysia COVID-19 Infection

Cumulative Infection

700Q

6000

5000

T

T

4000

3000~

2000-

T

100Q

Time Response Comparison
T T T

Validation data
Sys1

| L 1
10 20 30

Time (day)

Advanced Modelling and Control

The 2" order AR model fit the
infection data well (97% fitness)

The same data used to build the
model is used for the prediction

How accurate the model
prediction will be if it is used to
forecast the data beyond

30/04/2020

Let include the data up to
09/05/2020 in X dataset.

9 data points added.
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Example 2 — Malaysia COVID-19 Infection

* Copy and past the entire dataset
(including 9 extra points) onto Matlab Time Response Comparison
Command Window 7009 I I ‘ ‘ I I I ‘ I I

Validation data
Sys1

T

* Type as follows 6000

T

>> compare(X,Sys1,9); 5000

T

* Usem =9, because we want to predict
the 9 data points added using the AR
model

Fitness drop to 85%

400Q

3000

T

2000

T

Cumulative Infection

T

* Longer prediction, poorer model 1004
fitness.

Form =2, 3,4, 5 and 6 the fitness 0 20 30
values are 97%, 96%, 94%, 93% and

91% respectively. Time (day)
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ARX model

 Is a linear equation for the present output value as a function of the past output and input
values in discrete time

« Single input and single output ARX structure without input delay:

p q
yet+ Z aiyi—i = Z Biu,_; + €
i=1 i—0

« Can be expressed using the back shift operator:
y()A(z) = B(z)u(t) + €

Where A(z) =1+ ayz7t +apz 2 + -+ ayzP and B(z) = By + Pzt + - + Bz~

* For system with input delay with magnitude ny:

p q
Ve + Z AYe—i = Z Biug—n,-i + €
i=1 I=1



Example 3

« Consider a transfer function given as follows:

2exp(—s)
G —
(8 =05 11

* Find an ARX model for the above system, with 1 unit step
change in input and sampling time Ts = 1 unit

Convert into IDDATA format in
> u = Matlab
L Syntax: dat = iddata(y,u,Ts)

RIRr(R|Rr[(R|kr|IR|ILR|IO|lO|lO|O|O

J\/H, 2 > y >> datX = iddata(y,u,1)

-

>> sys=arx(datX,[3, 2, 1]);



Example 3 cont..

From Matlab:
A(z) =1-0.9048 z*-1 - 6.647¢e-10 z*-2 - 8.099e-16 z"-3
B(z) = 9.789e-07 z*-1 + 0.1903 zA-2

Fit to estimation data: 100% (prediction focus)
FPE: 1.855e-31, MSE: 1.249e-31



ARMA

 Autoregressive-moving average (ARMA) model for “stationary” time series

« Combination of autoregression (AR) and moving average (MA)

 ARMA model can be used to understand and predict future values in time series
 ARMA model:

p q
y(t)=c+e+ Z AiYe—i T z Bir—i
i=1

=1

where a; and f; are the model parameters, p and q are the model orders, c is the
constant and ¢, €;_; are white noise errors.

« y at time t = constant + weighted sum of the last p values of y + weighted sum of
the last q forecast errors



Nonseasonal ARIMA model

* Non-seasonal time series consists of a trend component and an irregular
component.

» Decomposition of the time series into these components and estimation of the
trend component and irregular component.

« ARIMA = autoregressive integrated moving average, consists of AR, | and MA
where | means the integration.

« Matlab has a built-in ‘arima’ function to build an ARIMA model - the syntax:
« Mdl = arima(p,d,q)

« p is the number of autoregressive terms,
» d is the number of nonseasonal differences needed for stationarity, and
« g is the number of lagged forecast errors in the prediction equation.



Matlab function - arima(p,d,q)

* Significance of d
« If d = 0, then AY,= y, where AY; denotes the 0" difference of y
e Ifd=1,then AY;= y; — y;_4
« Ifd =2, then AY;= (y: —ye—1) — W1 — Vie—2) =¥t — 2Ve-1 + Yi2
* Note: d= 2 means the first-difference of the first-difference
« Some examples of typical model specifications:
« ARIMA(0,1,0) = random walk model
« ARIMA(2,0,0) = 2nd-order autoregressive model
* ARIMA(0,1,1) = simple exponential smoothing model
« ARIMA(1,1,2) = linear exponential smoothing with damped trend



Example 4 — Daily Prices of Black Pepper

 Black pepper prices from 02-01-
2019 to 1?—06-2019

* Use the following Matlab functions
1. arima(p,d,q) => to build ARIMA model

estimate(Md|,X) => to estimate the
ARMA model parameters

2.

3. simulate(EstMdI,t) => to simulate the
ARMA model

4.

plot(tx,X,tx,y) = > to compare the data
and model estimation

* Copy and paste the X data (black
pepper price) on Matlab Command
window

298

Price (02-01-2019 to 1706-2019)

0 10 20

30 40 50 60 70 80 90 100 110 120
Time (day)

Sarawak Black Pepper Daily Price (USD/MT)



Example 4 - continue ...

* There are 118 data points (over 118
days);

* Type on Matlab Command window:
,>[>],X =[ ]; % copy and paste excel data into
>>tx =[1:1:118]’;

* Build ARIMA model, e.g., try 2
specifications

>>MdI1 = arima(1,0,3);

>>MdI2 = arima(2,0,0);

* Estimate model parameters
>> EstMdI1 = estimate(MdI1,X);
>>EstMdI2 = estimate(MdI2,X);

* ARIMA 1 is given by

Yt
= 229.38 + 0.925y,_41 + 0.03¢,_4

+0.072¢&,_, + 0.546¢,_5

* ARIMA 2 is given by
vy = 24.13 + 0.635y,_1 + 0.357y;_,

e Simulate the models:

>>y1 = simulate(EstMdI1,n); % n =
length(tx)

>>y2 = simulate(EstMdI2,n);
* Plot the data and model estimation



Example 4 — continue...

120

315(: T T T T T 335C T T T T T
Data
Model 1 3300 1
—~ 3100 . — 3250 .
= =
= =
a a 3200 -
2 < Data
2 3050 ] 2 3150 .
[} [0} Model 2
.Q o
= £ 310G -
3000 . 3050 .
3000 .
295C 1 1 1 1 1 295C 1 1 1 1 1
0 20 40 60 80 100 120 0 20 40 60 80 100
Time (day) Time (day)
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Example 5

e Data trend does not show
significant drift.

* Try a few models A

i. MdI1=arima(2,0,0) 05
ii. MdI2=arima(2,1,1); - 0
iii. MdI3 =arima(2,0,2); 08
« ARIMA 1 1
y, = 0.00118 + 0.925y,_, — 0.0769y,_, r
« ARIMA?2 oy
y; = 0.0016 — 0.5798y,_; + 0.1542y,_, + 0.6022¢,_, 0

« "ARIMA 3

YVt
= —0.5799y,_; + 0.1542y,_, — 0.3978¢;_, — 0.6022¢;_,
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Example 5 - continue ...

This is a more
suitable
model for the
data.
The other 2
models are
less suitable

/

Advanced Modelling and Contro

-3

-10
0 10 20 30 40 50 60 70 80 90 100

::ai-
=
— =
==
o
=z

MMMMMM

MMMMMM

t
28



Summary

» Time series data analysis is common in process industry and in many
other fields

« 3 common models are AR, ARX and ARMA (or ARIMA in Matlab)

» Selection of a suitable model structure requires some knowledge about the
data characteristics, e.g., stationary or non-stationary, random or

deterministic

* ARX can be used to represent a transfer function model



