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Importance of process analysis and control

Optimal process operations require efficient and effective control
Control systems and advanced algorithms are deployed to monitor, regulate, and
optimize the process variables.
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Process System, Input and Output

Manipulated Variable (MV): The flow rate of the liquid into
or out of the tank.

Controlled Variable (CV): Level of the liquid in the tank

Disturbances: Changes in inlet flow rate, changes in
outlet flow rate, temperature variations, pressure
fluctuations

Unmeasured Output: The temperature of the liquid in the
tank
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Control objectives

Explicit control objectives
(ECOs)

Clearly defined and typically
quantifiable goals for the
performance of a control system.
These objectives are explicitly
stated
Form the basis of the formal design
and analysis of control systems

Examples:
Setpoint Tracking, Disturbance Rejection, Stability,
Speed of Response, Overshoot Minimization,
Regulatory Compliance

Implicit control objectives
(ICOs)
Not explicitly stated or quantified
Often evaluated qualitatively
Have a significant long-term
impact
Play a crucial role in the successful
implementation
Examples:
Simplicity, Reliability, Cost-effectiveness, Safety,
Flexibility, Scalability

Control System Design should link the two types of control objectives.

Real plants can have similar ICOs but different ECOs
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Implicit control objectives

Safety First
People
Environment
Equipment

Profit
meeting final product specifications
minimizing waste production
minimizing environmental impact
minimizing energy use
maximizing overall production rate

Reducing variability
Poor control requires set point far
from constraint

Good control permits set point near
constraint
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Optimal plant operations
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Hirarchy of process control activities
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Overview of control system design
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Fundamentals of process
modeling

Why process modeling?
Types of process models
Basic principles of mass and energy balances
Process control terminology
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Why process modeling?

Enhancing Process Understanding
Enable study of transient behavior without disruption

Provide valuable insights into dynamic and steady-state process behavior

Useful even before plant construction

Process Simulators for Training
Essential for training plant operators in complex units and emergencies

Create a realistic training environment when connected to process control equipment

Facilitating Evaluation of Control Strategies
Assist in identifying variables to be controlled and manipulated

Aid in preliminary controller tuning

Play an explicit role in model-based control strategies

Optimization of Operating Conditions
Recalculation of optimum conditions maximizes profit or minimizes costs

Utilize steady-state process model and economic data

Allow for continuous enhancement of process performance
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Types of process models

Theoretical models
Developed using the principles of chemistry, physics,
and biology.

First principles models

Mass, momentum, and heat balances

Empirical models
Obtained by fitting experimental data.

Statistical models

Correlations

data driven models

Semi-empirical/ hybrid models
A combination of the theoretical and empirical models

The numerical values of one or more of the parameters
in a theoretical model are calculated from experimental
data.

Advanced Modeling and Control 13 / 48



Basic principles of mass and energy balances

In general

accumulation = in − out − reaction − tranfer

Mass balance (without reaction and transfer)

​ ={ rate of mass
accumulation

} ​ −{ rate of
mass in

} ​{ rate of
mass out

}

For component i (with reaction term included)

​ ​ ​ =⎩⎨
⎧ rate of

component i
accumulation ⎭

⎬
⎫

​ ​ ​ −⎩⎨
⎧ rate of

component i
in ⎭⎬

⎫
​ ​ ​ +⎩⎨

⎧ rate of
componenti 

out ⎭⎬
⎫

​ ​ ​⎩⎨
⎧ rate of

component i
produced ⎭⎬

⎫
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Basic principles of mass and energy balances

Energy balance

​ ​

​{  rate of energy 
 accumulation 

} = ​{  rate of energy in 
 by convection 

}

− ​{  rate of energy out 
 by convection 

}

+ ​ ​ ​⎩⎨
⎧  net rate of heat addition 

 to the system from 
 the surroundings  ⎭⎬

⎫

+ ​ ​ ​⎩⎨
⎧  net rate of work 

 performed on the system 
 by the surroundings  ⎭⎬

⎫
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Blending of two components

Overall mass balance

​ ={ rate of accumulation
of mass in the tank

} ​ −{ rate of
mass in

} ​{ rate of
mass out

}

​ =
dt

d(V ρ)
w ​ +1 w ​ −2 w

Component balance

​ =
dt

d(V ρx)
w ​x ​ +1 1 w ​x ​ −2 2 wx
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Blending of two components

Overall mass balance

Component balance

It is possible to further simplify the system of two differential equations to

​ ={ rate of accumulation
of mass in the tank

} ​ −{ rate of
mass in

} ​{ rate of
mass out

}

​ =
dt

d(V ρ)
w ​ +1 w ​ −2 w

​ =
dt

d(V ρx)
w ​x ​ +1 1 w ​x ​ −2 2 wx

​ =
dt

dV
​ w ​ + w ​ − w

ρ

1
( 1 2 )

​ =
dt

dx
​ x ​ − x +

V ρ

w ​1 ( 1 ) ​ x − x
V ρ

w ​2 ( 2 )
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Degrees of freedom analysis

To simulate a process, it’s crucial to confirm that the model equations, both
differential and algebraic, form a set of relations that can be solved.

For the model to have a unique solution, the number of unknown variables should
match the number of independent model equations.

N ​ =F N ​ −V N ​E

1. : The process model is exactly specified. If , then the number of equations is equal to the
number of process variables and the set of equations has a solution. (However, the solution may not be unique

for a set of nonlinear equations.)

N ​ =F 0 NF = 0

2. : The process is underspecified. If , then , so there are more process variables than

equations. Consequently, the  equations have an infinite number of solutions, because NF process variables
can be specified arbitrarily.

N ​ >F 0 N ​ >F 0 N ​ >V N ​E

N ​E

3. : The process model is overspecified. For , there are fewer process variables than equations,
and consequently the set of equations has no solution.
N ​ <F 0 N ​ <F 0
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Solution of model equations

Nonlinear Chemical Processes: These result in complex ordinary differential
equations when modeled.
Linear System Controls: These tools are well-established and provide valuable
insights when processes operate near a specific point.
Laplace Transform: This simplifies creation of input-output models by converting
differential equations to algebraic ones.
Transfer Function: An essential tool in control system design and analysis,
representing linear control theory.
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Empirical models

We can construct an empirical model using plant data
Assume a certain idealized model structure
First-order plus deadtime (FOPDT) model
Time domain form

Frequency domain form (transfer function)

: Process gain; : time constant; : deadtime

FOPDT model is often used in controller tuning. A transfer function is a mathematical formula that describes
how a system responds to different inputs over time.

τ ​ ​ +p
dt

dy(t)
y(t) = K ​u(t −p θ )p

G ​(s) =p
τ ​s + 1p

K ​ep
−θ ​sp

K ​p τ ​p θ ​p
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Second-Order plus Deadtime (SOPDT) Model

Time domain

Frequency domain

: Process gain; : time constant; θ: dead time; : damping factor or coefficient

Behavior:

: Overdamped

: Underdamped

: Critically damped

: Sustained oscillations

: Unstable

τ ​ +2

dt2

d y(t)2

2ξτ ​ +
dt

dy(t)
y(t) = K ​u(t −p θ)

G ​(s) =p ​ =
U(s)
Y (s)

​

τ s + 2ξτs + 12 2

K ​ep
−θs

K ​p τ ξ

ξ > 1

0 < ξ < 1

ξ = 1

ξ = 0

ξ < 0
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Dynamic Behavior of Processes
Input types
Response of first-order systems
Response of second-order systems
Properties of transfer functions
Stability of linear systems
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Input types
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Response of first-order systems

Overall mass balance

Outlet flow rate, Fout has a square-root
dependence on liquid level 

Resulting nonlinear equation

Transfer function

Process gain (k): Ultimate value of the
response (new steady-state) for a unit-
step change in the input.
Time constant (τ): Time necessary for
the process to adjust to a change in the
input.

A =
dt

dh
F ​ −in F ​out

F ​ =out

β ​h

A ​ =
dt

dh
F ​ −in β ​h

τ ​ +
dt

dh̄
=h̄ kF ​; τ =in ​ ; k =

β

2A ​h
​

β

2 ​h

​ =
​(s)F ​nī

(s)h̄
g(s) = ​

τs + 1
k
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Response of first-order systems

The ultimate (steady-state) value of the
response, , is equal to k for
a unit-step change.
When the elapsed time is equal to the
process time constant , the
system reaches 63.2% of its final
response.
After approximately 5τ, the transient
response can be considered as having
reached steady-state.
For a given t / τ, the output reaches the
same fraction of the ultimate output
response value.

In a tank process, a rise in the inlet flow rate elevates the liquid level, which in turn increases the hydrostatic pressure and subsequently the outlet flow rate. The
system eventually reaches a new steady state. This feature is termed ‘self-regulation’.

(t→h̄ ∞)

t = τ
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Response of first-order systems
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Response of second-order systems

Rise time ( ): time required for y(t) to
first cross its new steady state value
Overshoot (a/b): The maximum amount
by which the response exceeds the
new steady state value
Decay ratio (c/a): Ratio of the height of
successive peaks in the response
Period of oscillation (P): time for a
complete cycle

Response/ settling time ( ): time
required for the response to remain
within a ± 5% band based upon steady
state value.

Decay ratio, overshoot, response time, and damping factor (ξ) can be used as a basis for tuning.

t ​r

t ​s
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Response of second-order systems

Critically damped (ξ = 1)

Output response becomes more sluggish as τ increases.

The responses are qualitatively similar.

Effect of ξ

ξ < 1: Oscillation and overshoot

ξ > 1: Sluggish response, no oscillations; no overshoot

ξ = 1: Fastest response, no oscillations; no overshoot
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Properties of transfer functions

For transfer function

The roots of the polynomial z(s) are the zeros of the transfer function or the zeros
of the process.
The roots of the polynomial p(s) are the poles of the transfer function or the poles
of the process.

A physical system needs to be proper ( ), and casual (output depends only
on past inputs)
Characteristic equation
The denominator polynomial p(s) when equated to zero is called the
characteristic equation:

g(s) = ​ =
u(s)
y(s)

​ =
a ​s + … + a ​0

n
n

b ​s + … + b ​0
m

m
​

p(s)
z(s)

n ≥ m

p(s) = a ​s +0
n … + a ​ =n 0
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Stability of linear systems

The location of the poles of a transfer function
determines the bounded input–bounded
output (BIBO) stability of a process.

If the transfer function of a dynamic process
has a pole with a positive real part, the process
is unstable. If the real part is zero, then the
process is critically stable

We need to be cautious when we derive a
transfer function model from a statespace
model, because a zero (or zeros) may cancel a
pole (or poles). This becomes especially
important if the canceled pole is unstable,
which means that those modes of the process
would be hidden from us.
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Routh’s Stability Criterion

Routh’s Criterion is a mathematical test that is used to determine whether a linear
system is stable or unstable. It does not require explicit calculation of the roots of
the characteristic equation.

The first step in Routh’s Criterion is to set up the
Routh array.
Then, we examine the first column of the array.
If there are no sign changes in the first column,
the system is stable.
If there are sign changes in the first column, the
system is unstable. The number of sign changes
corresponds to the number of roots with
positive real parts.

Routh’s Criterion can also be used to determine relative stability and system type.
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Root locus method

Root Locus is a graphical method used in control
systems to examine how the system stability
changes with varying gain.

It shows possible pole locations as system gain
varies from zero to infinity.
The method provides insights into stability and
transient response.
Root locus begins at open-loop poles and ends
at open-loop zeros.
The plot exists on parts of the complex plane
where the number of open-loop poles and zeros
to the right is odd.
Consider the characteristic equation

p(s, k) = s +2 s+ k = 0
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Feedback Control Systems
Introduction to feedback control
Control law
Proportional, integral, and derivative control actions
Further topics
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Introduction to feedback control

Advanced Modeling and Control 33 / 48



Introduction to feedback control

Error: 

Control action: 

Manipulated variable: 

Controlled variable: 

Closed loop transfer function

y = g ​m +p g ​dd

e = y ​ −sp y ​m

c = g ​e =c g ​(y ​ −c sp y ​)m

m = g ​c =f g ​g ​(y ​ −c f sp

y ​)m

y = g ​m +p g ​d =d g ​g ​g ​(y ​ −c f p sp y ​) +m g ​dd

y = ​y ​ +
1 + g ​g ​g ​g ​p f c m

g ​g ​g ​p f c
sp ​d

1 + g ​g ​g ​g ​p f c m

g ​d
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Introduction to feedback control

 embodies the dynamics of the setpoint response.
How the process output will respond when the set-point is changed?

 indicates how the process output will respond when a disturbance enters the process.

Denominators of the closed-loop transfer functions,  and , are the same, indicating that they share the same
stability characteristics.

In a more general setting, the closed-loop transfer function for general block diagram is represented as

In this expression,  is an output variable or any internal variable within the control loop and  represents an input
variable such as  or .

The transfer function  is the product of the transfer functions in the forward path that connects an input  to an
output .

 is the transfer function composed of all transfer functions in the feedback loop.

y = G ​y ​ +sp sp G ​dd

G ​sp

G ​(s)d

G ​sp G ​d

​ =
r ​(s)i

r(s)
​

1 + G ​(s)2

G ​(s)1

r r ​i

y ​sp d

G ​1 r ​i

r

G ​2
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Introduction to feedback control
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Introduction to feedback control
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Control law

The control signal c(t) is calculated, given the value of the error e(t), through a
predefined functional relationship

c(t) = C e(t)[ ]

The function  constitutes teh control law.C[⋅]

Establishes the manner with which the error information is processed by the
controller.

The most common functional form is the three-mode proportional–integral–
derivative (PID) control law

​ =
(s)ē

(s)c̄
g ​(s) =c k ​ 1 + ​ + τ ​sc (

τ ​sI

1
D )
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Proportional mode

This mode produces a control signal that is proportional to the error:

c(t) = k ​e(t) +c c ​b

 represents the proportional gain of the controller: Defines how sensitive the
controller is to errors present in the system.
k ​c

 is a bias signal that corresponds to the value of the control signal when the
error is zero. The bias signal is the steady-state value of the control signal.
c ​b

Define - deviation variable ; also (t) =c̄ c(t) − c ​b (t) =ē e(t)

Transfer function:

​
=

(s)ē

(s)c̄
g ​(s) =c k ​c
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Proportional mode
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Integral mode

The control signal for this mode is produced by the integral equation:

c(t) = ​ e(t)dt +
τ ​I

k ​c ∫ c ​b

The new parameter  represents the integral time constant or the reset time.τ ​I

With this mode, the controller responds effectively to errors that build up over
time.
This is a very important feature because even if the error is small, as long as it persists, a large control signal may be
calculated, thus helping to eliminate the error quickly

The transfer function of a controller with only the integral mode is

​ =
(s)ē

(s)c̄
g ​(s) =c k ​ ​c (

τ ​sI

1 )
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Integral mode
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Derivative mode

In this mode, the control signal responds to the rate of change of the error signal:

c(t) = k ​τ ​ ​ +c D dt
de(t)

c ​b

A new parameter  is introduced as the derivative time constant.τ ​D

The role of this mode is to judge the change in the error.
For instance, if the error is still present but not increasing as fast, the controller may use this information to decrease
the control signal, thus possibly avoiding overly aggressive control actions.

The transfer function for a controller with derivative mode only is given by

​ =
(s)ē

(s)c̄
g ​(s) =c k ​ τ ​sc ( D )
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Derivative mode
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Mixing tank

The manipulated variable is the flow rate of
stream 2, , to control the outlet mass
fraction, .

The disturbance is the flow rate of stream 1,
.

The feed mass fractions are assumed
constant.

There is a P controller, .

The dynamics of the actuators and the
sensors are accounted for by pure dead-
time elements, resulting in the transfer
functions

F ​2

x

F ​1

g ​(s) =c k ​c

(s) =x̄ ​ ​(s) +
2.5s + 1
−0.1e−s

F̄1 ​ ​(s)
2.5s + 1
0.1e−s

F̄2
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Mixing tank: setpoint change
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Mixing tank: disturbance rejection
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Further topics

Model liniarization
Controller design and tuning methods
Frequency response analysis
Bode plots and Nyquist plots
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